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Domain Gap

source domain/environment target domain/environment



Domain randomization/Meta-learning

e Train a robust/meta policy by sampling configurations of the source
environments from a certain distribution.

" = argmax Egp,Ea, J ()

Tobin et al., 2017; Mordatch et al., 2015; Antonova et al., 2017; Chebotar et al., 2019
Finn et al., 2017; Nagabandi et al., 2018



Domain randomization/Meta-learning

e Usually need a very large amount of training in the source environment.
e Perform suboptimally when the target environment lies out of the training

distribution.

Tobin et al., 2017; Mordatch et al., 2015; Antonova et al., 2017; Chebotar et al., 2019
Finn et al., 2017; Nagabandi et al., 2018



Policy adaptation

e Suppose we have a policy that achieves high rewards in one source
environment
e Use the source policy and source environment as guidance for adaptation

e The two MDPs share the state space and reward function




Imitation learning

Learning from expert action x
Ross et al., 2011

Learning from expert observation “

Tobin et al., 2017; Tobin et al., 2019; Sun et al. 2019; Yang et al., 2019
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Recover source policy’s trajectory in the source environment (policy adaptation)!



Policy adaptation with data aggregation

e The source MDP: M(%) .= {S,A(s), ) H, R}
e The target MDP: M) .= {S,A(t),f(t),H, R}
e The source policy: 7'('(8)

e Qur goalis just to learn a model f that well approximates f(t)

e The target policy:

w(s) 2 argmin | f(1s,a) — £ (|5, (5)]
ac Al



Policy adaptation with data aggregation
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How fast can we adapt?

some action in _4(s) some action in A(t)

||f(8)('|87a’) — f(t)(-|s,a,’)|| < €s,a

fWeF



Main result

Source policy’s trajectory distribution in source env |A(t) | # iterations
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A practical algorithm

Previously we assumed two oracles:

fe—l—l — arg I}lea]}__( Z log f(S/"S? a)
s,a,s’ €D

w(t)(s) Sl argn(li;a ||f(|8, a) — f(s)('|377T(8)(3))||
ac Al



The deviation model
Objective: A™ " (5,a) £ f() (5,7 (5)) — fP(s,a)

| B e
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CEM

e Just use the output of DM as cost!

argmin ||dg (s, a)||2
acA;

e One step look-ahead is enough!



Results
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Thank you!

Website: https://vudasonqg.qithub.io/PADA

Code: https://qgithub.com/vyudasonqg/policy adapt



https://yudasong.github.io/PADA
https://github.com/yudasong/policy_adapt

